Warning
This site has been replaced by the new QIIME 2 “amplicon distribution” documentation, as of the 2025.4 release of QIIME 2. You can still access the content from the “old docs” here for the QIIME 2 2024.10 and earlier releases, but we recommend that you transition to the new documentation at https://amplicon-docs.qiime2.org. Content on this site is no longer updated and may be out of date.
Are you looking for:
the QIIME 2 homepage? That’s https://qiime2.org.
learning resources for microbiome marker gene (i.e., amplicon) analysis? See the QIIME 2 amplicon distribution documentation.
learning resources for microbiome metagenome analysis? See the MOSHPIT documentation.
installation instructions, plugins, books, videos, workshops, or resources? See the QIIME 2 Library.
general help? See the QIIME 2 Forum.
Old content beyond this point… 👴👵
regress-samples-ncv: Nested cross-validated supervised learning regressor.¶
Docstring:
Usage: qiime sample-classifier regress-samples-ncv [OPTIONS] Predicts a continuous sample metadata column using a supervised learning regressor. Uses nested stratified k-fold cross validation for automated hyperparameter optimization and sample prediction. Outputs predicted values for each input sample, and relative importance of each feature for model accuracy. Inputs: --i-table ARTIFACT FeatureTable[Frequency | RelativeFrequency | PresenceAbsence | Composition] Feature table containing all features that should be used for target prediction. [required] Parameters: --m-metadata-file METADATA --m-metadata-column COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required] --p-cv INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5] --p-random-state INTEGER Seed used by random number generator. [optional] --p-n-jobs NTHREADS Number of jobs to run in parallel. [default: 1] --p-n-estimators INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100] --p-estimator TEXT Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor[DecisionTree]', 'AdaBoostRegressor[ExtraTrees]', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR') Estimator method to use for sample prediction. [default: 'RandomForestRegressor'] --p-stratify / --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False] --p-parameter-tuning / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False] --p-missing-samples TEXT Choices('error', 'ignore') How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. [default: 'error'] Outputs: --o-predictions ARTIFACT SampleData[RegressorPredictions] Predicted target values for each input sample. [required] --o-feature-importance ARTIFACT FeatureData[Importance] Importance of each input feature to model accuracy. [required] Miscellaneous: --output-dir PATH Output unspecified results to a directory --verbose / --quiet Display verbose output to stdout and/or stderr during execution of this action. Or silence output if execution is successful (silence is golden). --example-data PATH Write example data and exit. --citations Show citations and exit. --use-cache DIRECTORY Specify the cache to be used for the intermediate work of this action. If not provided, the default cache under $TMP/qiime2/will be used. IMPORTANT FOR HPC USERS: If you are on an HPC system and are using parallel execution it is important to set this to a location that is globally accessible to all nodes in the cluster. --help Show this message and exit.
Import:
from qiime2.plugins.sample_classifier.methods import regress_samples_ncv
Docstring:
Nested cross-validated supervised learning regressor. Predicts a continuous sample metadata column using a supervised learning regressor. Uses nested stratified k-fold cross validation for automated hyperparameter optimization and sample prediction. Outputs predicted values for each input sample, and relative importance of each feature for model accuracy. Parameters ---------- table : FeatureTable[Frequency | RelativeFrequency | PresenceAbsence | Composition] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Numeric] Numeric metadata column to use as prediction target. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_jobs : Threads, optional Number of jobs to run in parallel. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor[DecisionTree]', 'AdaBoostRegressor[ExtraTrees]', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional Estimator method to use for sample prediction. stratify : Bool, optional Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. Returns ------- predictions : SampleData[RegressorPredictions] Predicted target values for each input sample. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy.