Warning
This site has been replaced by the new QIIME 2 “amplicon distribution” documentation, as of the 2025.4 release of QIIME 2. You can still access the content from the “old docs” here for the QIIME 2 2024.10 and earlier releases, but we recommend that you transition to the new documentation at https://amplicon-docs.qiime2.org. Content on this site is no longer updated and may be out of date.
Are you looking for:
the QIIME 2 homepage? That’s https://qiime2.org.
learning resources for microbiome marker gene (i.e., amplicon) analysis? See the QIIME 2 amplicon distribution documentation.
learning resources for microbiome metagenome analysis? See the MOSHPIT documentation.
installation instructions, plugins, books, videos, workshops, or resources? See the QIIME 2 Library.
general help? See the QIIME 2 Forum.
Old content beyond this point… 👴👵
fit-classifier: Fit a supervised learning classifier.¶
Docstring:
Usage: qiime sample-classifier fit-classifier [OPTIONS] Fit a supervised learning classifier. Outputs the fit estimator (for prediction of test samples and/or unknown samples) and the relative importance of each feature for model accuracy. Optionally use k-fold cross- validation for automatic recursive feature elimination and hyperparameter tuning. Inputs: --i-table ARTIFACT FeatureTable[Frequency | RelativeFrequency | PresenceAbsence | Composition] Feature table containing all features that should be used for target prediction. [required] Parameters: --m-metadata-file METADATA --m-metadata-column COLUMN MetadataColumn[Categorical] Numeric metadata column to use as prediction target. [required] --p-step PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05] --p-cv INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5] --p-random-state INTEGER Seed used by random number generator. [optional] --p-n-jobs NTHREADS Number of jobs to run in parallel. [default: 1] --p-n-estimators INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100] --p-estimator TEXT Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier[DecisionTree]', 'AdaBoostClassifier[ExtraTrees]', 'KNeighborsClassifier', 'LinearSVC', 'SVC') Estimator method to use for sample prediction. [default: 'RandomForestClassifier'] --p-optimize-feature-selection / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False] --p-parameter-tuning / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False] --p-missing-samples TEXT Choices('error', 'ignore') How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. [default: 'error'] Outputs: --o-sample-estimator ARTIFACT SampleEstimator[Classifier] Trained sample classifier. [required] --o-feature-importance ARTIFACT FeatureData[Importance] Importance of each input feature to model accuracy. [required] Miscellaneous: --output-dir PATH Output unspecified results to a directory --verbose / --quiet Display verbose output to stdout and/or stderr during execution of this action. Or silence output if execution is successful (silence is golden). --example-data PATH Write example data and exit. --citations Show citations and exit. --use-cache DIRECTORY Specify the cache to be used for the intermediate work of this action. If not provided, the default cache under $TMP/qiime2/will be used. IMPORTANT FOR HPC USERS: If you are on an HPC system and are using parallel execution it is important to set this to a location that is globally accessible to all nodes in the cluster. --help Show this message and exit.
Import:
from qiime2.plugins.sample_classifier.methods import fit_classifier
Docstring:
Fit a supervised learning classifier. Fit a supervised learning classifier. Outputs the fit estimator (for prediction of test samples and/or unknown samples) and the relative importance of each feature for model accuracy. Optionally use k-fold cross- validation for automatic recursive feature elimination and hyperparameter tuning. Parameters ---------- table : FeatureTable[Frequency | RelativeFrequency | PresenceAbsence | Composition] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Categorical] Numeric metadata column to use as prediction target. step : Float % Range(0.0, 1.0, inclusive_start=False), optional If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_jobs : Threads, optional Number of jobs to run in parallel. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier[DecisionTree]', 'AdaBoostClassifier[ExtraTrees]', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional Estimator method to use for sample prediction. optimize_feature_selection : Bool, optional Automatically optimize input feature selection using recursive feature elimination. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. Returns ------- sample_estimator : SampleEstimator[Classifier] Trained sample classifier. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy.