Warning
This site has been replaced by the new QIIME 2 “amplicon distribution” documentation, as of the 2025.4 release of QIIME 2. You can still access the content from the “old docs” here for the QIIME 2 2024.10 and earlier releases, but we recommend that you transition to the new documentation at https://amplicon-docs.qiime2.org. Content on this site is no longer updated and may be out of date.
Are you looking for:
the QIIME 2 homepage? That’s https://qiime2.org.
learning resources for microbiome marker gene (i.e., amplicon) analysis? See the QIIME 2 amplicon distribution documentation.
learning resources for microbiome metagenome analysis? See the MOSHPIT documentation.
installation instructions, plugins, books, videos, workshops, or resources? See the QIIME 2 Library.
general help? See the QIIME 2 Forum.
Old content beyond this point… 👴👵
confusion-matrix: Make a confusion matrix from sample classifier predictions.¶
Docstring:
Usage: qiime sample-classifier confusion-matrix [OPTIONS] Make a confusion matrix and calculate accuracy of predicted vs. true values for a set of samples classified using a sample classifier. If per-sample class probabilities are provided, will also generate Receiver Operating Characteristic curves and calculate area under the curve for each class. Inputs: --i-predictions ARTIFACT SampleData[ClassifierPredictions] Predicted values to plot on x axis. Should be predictions of categorical data produced by a sample classifier. [required] --i-probabilities ARTIFACT SampleData[Probabilities] Predicted class probabilities for each input sample. [optional] Parameters: --m-truth-file METADATA --m-truth-column COLUMN MetadataColumn[Categorical] Metadata column (true values) to plot on y axis. [required] --p-missing-samples TEXT Choices('error', 'ignore') How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. [default: 'error'] --p-vmin VALUE Float | Str % Choices('auto') The minimum value to use for anchoring the colormap. If "auto", vmin is set to the minimum value in the data. [default: 'auto'] --p-vmax VALUE Float | Str % Choices('auto') The maximum value to use for anchoring the colormap. If "auto", vmax is set to the maximum value in the data. [default: 'auto'] --p-palette TEXT Choices('YellowOrangeBrown', 'YellowOrangeRed', 'OrangeRed', 'PurpleRed', 'RedPurple', 'BluePurple', 'GreenBlue', 'PurpleBlue', 'YellowGreen', 'summer', 'copper', 'viridis', 'cividis', 'plasma', 'inferno', 'magma', 'sirocco', 'drifting', 'melancholy', 'enigma', 'eros', 'spectre', 'ambition', 'mysteriousstains', 'daydream', 'solano', 'navarro', 'dandelions', 'deepblue', 'verve', 'greyscale') The color palette to use for plotting. [default: 'sirocco'] Outputs: --o-visualization VISUALIZATION [required] Miscellaneous: --output-dir PATH Output unspecified results to a directory --verbose / --quiet Display verbose output to stdout and/or stderr during execution of this action. Or silence output if execution is successful (silence is golden). --example-data PATH Write example data and exit. --citations Show citations and exit. --use-cache DIRECTORY Specify the cache to be used for the intermediate work of this action. If not provided, the default cache under $TMP/qiime2/will be used. IMPORTANT FOR HPC USERS: If you are on an HPC system and are using parallel execution it is important to set this to a location that is globally accessible to all nodes in the cluster. --help Show this message and exit.
Import:
from qiime2.plugins.sample_classifier.visualizers import confusion_matrix
Docstring:
Make a confusion matrix from sample classifier predictions. Make a confusion matrix and calculate accuracy of predicted vs. true values for a set of samples classified using a sample classifier. If per-sample class probabilities are provided, will also generate Receiver Operating Characteristic curves and calculate area under the curve for each class. Parameters ---------- predictions : SampleData[ClassifierPredictions] Predicted values to plot on x axis. Should be predictions of categorical data produced by a sample classifier. truth : MetadataColumn[Categorical] Metadata column (true values) to plot on y axis. probabilities : SampleData[Probabilities], optional Predicted class probabilities for each input sample. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. vmin : Float | Str % Choices('auto'), optional The minimum value to use for anchoring the colormap. If "auto", vmin is set to the minimum value in the data. vmax : Float | Str % Choices('auto'), optional The maximum value to use for anchoring the colormap. If "auto", vmax is set to the maximum value in the data. palette : Str % Choices('YellowOrangeBrown', 'YellowOrangeRed', 'OrangeRed', 'PurpleRed', 'RedPurple', 'BluePurple', 'GreenBlue', 'PurpleBlue', 'YellowGreen', 'summer', 'copper', 'viridis', 'cividis', 'plasma', 'inferno', 'magma', 'sirocco', 'drifting', 'melancholy', 'enigma', 'eros', 'spectre', 'ambition', 'mysteriousstains', 'daydream', 'solano', 'navarro', 'dandelions', 'deepblue', 'verve', 'greyscale'), optional The color palette to use for plotting. Returns ------- visualization : Visualization