Warning
This site has been replaced by the new QIIME 2 “amplicon distribution” documentation, as of the 2025.4 release of QIIME 2. You can still access the content from the “old docs” here for the QIIME 2 2024.10 and earlier releases, but we recommend that you transition to the new documentation at https://amplicon-docs.qiime2.org. Content on this site is no longer updated and may be out of date.
Are you looking for:
the QIIME 2 homepage? That’s https://qiime2.org.
learning resources for microbiome marker gene (i.e., amplicon) analysis? See the QIIME 2 amplicon distribution documentation.
learning resources for microbiome metagenome analysis? See the MOSHPIT documentation.
installation instructions, plugins, books, videos, workshops, or resources? See the QIIME 2 Library.
general help? See the QIIME 2 Forum.
Old content beyond this point… 👴👵
evaluate-seqs: Compute summary statistics on sequence artifact(s).¶
Docstring:
Usage: qiime rescript evaluate-seqs [OPTIONS] Compute summary statistics on sequence artifact(s) and visualize. Summary statistics include the number of unique sequences, sequence entropy, kmer entropy, and sequence length distributions. This action is useful for both reference taxonomies and classification results. Inputs: --i-sequences ARTIFACTS... List[FeatureData[Sequence]] One or more sets of sequences to evaluate. [required] Parameters: --p-labels TEXT... List of labels to use for labeling evaluation List[Str] results in the resulting visualization. Inputs are labeled with labels in the order that each is input. If there are fewer labels than inputs (or no labels), unnamed inputs are labeled numerically in sequential order. Extra labels are ignored. [optional] --p-kmer-lengths INTEGERS... Range(1, None) Sequence kmer lengths to optionally use for entropy calculation. Warning: kmer entropy calculations may be time-consuming for large sequence sets. [optional] --p-subsample-kmers PROPORTION Range(0, 1, inclusive_start=False, inclusive_end=True) Optionally subsample sequences prior to kmer entropy measurement. A fraction of the input sequences will be randomly subsampled at the specified value. [default: 1.0] --p-palette TEXT Choices('Set1', 'Set2', 'Set3', 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'tab10', 'tab20', 'tab20b', 'tab20c', 'viridis', 'plasma', 'inferno', 'magma', 'cividis', 'terrain', 'rainbow', 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic') Color palette to use for plotting evaluation results. [default: 'viridis'] Outputs: --o-visualization VISUALIZATION [required] Miscellaneous: --output-dir PATH Output unspecified results to a directory --verbose / --quiet Display verbose output to stdout and/or stderr during execution of this action. Or silence output if execution is successful (silence is golden). --example-data PATH Write example data and exit. --citations Show citations and exit. --use-cache DIRECTORY Specify the cache to be used for the intermediate work of this action. If not provided, the default cache under $TMP/qiime2/will be used. IMPORTANT FOR HPC USERS: If you are on an HPC system and are using parallel execution it is important to set this to a location that is globally accessible to all nodes in the cluster. --help Show this message and exit.
Import:
from qiime2.plugins.rescript.visualizers import evaluate_seqs
Docstring:
Compute summary statistics on sequence artifact(s). Compute summary statistics on sequence artifact(s) and visualize. Summary statistics include the number of unique sequences, sequence entropy, kmer entropy, and sequence length distributions. This action is useful for both reference taxonomies and classification results. Parameters ---------- sequences : List[FeatureData[Sequence]] One or more sets of sequences to evaluate. labels : List[Str], optional List of labels to use for labeling evaluation results in the resulting visualization. Inputs are labeled with labels in the order that each is input. If there are fewer labels than inputs (or no labels), unnamed inputs are labeled numerically in sequential order. Extra labels are ignored. kmer_lengths : List[Int % Range(1, None)], optional Sequence kmer lengths to optionally use for entropy calculation. Warning: kmer entropy calculations may be time-consuming for large sequence sets. subsample_kmers : Float % Range(0, 1, inclusive_start=False, inclusive_end=True), optional Optionally subsample sequences prior to kmer entropy measurement. A fraction of the input sequences will be randomly subsampled at the specified value. palette : Str % Choices('Set1', 'Set2', 'Set3', 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'tab10', 'tab20', 'tab20b', 'tab20c', 'viridis', 'plasma', 'inferno', 'magma', 'cividis', 'terrain', 'rainbow', 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic'), optional Color palette to use for plotting evaluation results. Returns ------- visualization : Visualization