Fork me on GitHub

fit-classifier-sklearn: Train an almost arbitrary scikit-learn classifier

Citations
  • Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

Docstring:

Usage: qiime feature-classifier fit-classifier-sklearn [OPTIONS]

  Train a scikit-learn classifier to classify reads.

Inputs:
  --i-reference-reads ARTIFACT FeatureData[Sequence]
                                                                    [required]
  --i-reference-taxonomy ARTIFACT FeatureData[Taxonomy]
                                                                    [required]
  --i-class-weight ARTIFACT FeatureTable[RelativeFrequency]
                                                                    [optional]
Parameters:
  --p-classifier-specification TEXT
                                                                    [required]
Outputs:
  --o-classifier ARTIFACT
    TaxonomicClassifier                                             [required]
Miscellaneous:
  --output-dir PATH      Output unspecified results to a directory
  --verbose / --quiet    Display verbose output to stdout and/or stderr
                         during execution of this action. Or silence output if
                         execution is successful (silence is golden).
  --example-data PATH    Write example data and exit.
  --citations            Show citations and exit.
  --use-cache DIRECTORY  Specify the cache to be used for the intermediate
                         work of this action. If not provided, the default
                         cache under $TMP/qiime2/ will be used.
                         IMPORTANT FOR HPC USERS: If you are on an HPC system
                         and are using parallel execution it is important to
                         set this to a location that is globally accessible to
                         all nodes in the cluster.
  --help                 Show this message and exit.

Import:

from qiime2.plugins.feature_classifier.methods import fit_classifier_sklearn

Docstring:

Train an almost arbitrary scikit-learn classifier

Train a scikit-learn classifier to classify reads.

Parameters
----------
reference_reads : FeatureData[Sequence]
reference_taxonomy : FeatureData[Taxonomy]
classifier_specification : Str
class_weight : FeatureTable[RelativeFrequency], optional

Returns
-------
classifier : TaxonomicClassifier