Warning
This site has been replaced by the new QIIME 2 “amplicon distribution” documentation, as of the 2025.4 release of QIIME 2. You can still access the content from the “old docs” here for the QIIME 2 2024.10 and earlier releases, but we recommend that you transition to the new documentation at https://amplicon-docs.qiime2.org. Content on this site is no longer updated and may be out of date.
Are you looking for:
the QIIME 2 homepage? That’s https://qiime2.org.
learning resources for microbiome marker gene (i.e., amplicon) analysis? See the QIIME 2 amplicon distribution documentation.
learning resources for microbiome metagenome analysis? See the MOSHPIT documentation.
installation instructions, plugins, books, videos, workshops, or resources? See the QIIME 2 Library.
general help? See the QIIME 2 Forum.
Old content beyond this point… 👴👵
fit-classifier-naive-bayes: Train the naive_bayes classifier¶
Citations |
|
---|
Docstring:
Usage: qiime feature-classifier fit-classifier-naive-bayes [OPTIONS] Create a scikit-learn naive_bayes classifier for reads Inputs: --i-reference-reads ARTIFACT FeatureData[Sequence] [required] --i-reference-taxonomy ARTIFACT FeatureData[Taxonomy] [required] --i-class-weight ARTIFACT FeatureTable[RelativeFrequency] [optional] Parameters: --p-classify--alpha NUMBER [default: 0.001] --p-classify--chunk-size INTEGER [default: 20000] --p-classify--class-prior TEXT [default: 'null'] --p-classify--fit-prior / --p-no-classify--fit-prior [default: False] --p-feat-ext--alternate-sign / --p-no-feat-ext--alternate-sign [default: False] --p-feat-ext--analyzer TEXT [default: 'char_wb'] --p-feat-ext--binary / --p-no-feat-ext--binary [default: False] --p-feat-ext--decode-error TEXT [default: 'strict'] --p-feat-ext--encoding TEXT [default: 'utf-8'] --p-feat-ext--input TEXT [default: 'content'] --p-feat-ext--lowercase / --p-no-feat-ext--lowercase [default: True] --p-feat-ext--n-features INTEGER [default: 8192] --p-feat-ext--ngram-range TEXT [default: '[7, 7]'] --p-feat-ext--norm TEXT [default: 'l2'] --p-feat-ext--preprocessor TEXT [default: 'null'] --p-feat-ext--stop-words TEXT [default: 'null'] --p-feat-ext--strip-accents TEXT [default: 'null'] --p-feat-ext--token-pattern TEXT [default: '(?u)\\b\\w\\w+\\b'] --p-feat-ext--tokenizer TEXT [default: 'null'] --p-verbose / --p-no-verbose [default: False] Outputs: --o-classifier ARTIFACT TaxonomicClassifier [required] Miscellaneous: --output-dir PATH Output unspecified results to a directory --verbose / --quiet Display verbose output to stdout and/or stderr during execution of this action. Or silence output if execution is successful (silence is golden). --example-data PATH Write example data and exit. --citations Show citations and exit. --use-cache DIRECTORY Specify the cache to be used for the intermediate work of this action. If not provided, the default cache under $TMP/qiime2/will be used. IMPORTANT FOR HPC USERS: If you are on an HPC system and are using parallel execution it is important to set this to a location that is globally accessible to all nodes in the cluster. --help Show this message and exit.
Import:
from qiime2.plugins.feature_classifier.methods import fit_classifier_naive_bayes
Docstring:
Train the naive_bayes classifier Create a scikit-learn naive_bayes classifier for reads Parameters ---------- reference_reads : FeatureData[Sequence] reference_taxonomy : FeatureData[Taxonomy] class_weight : FeatureTable[RelativeFrequency], optional classify__alpha : Float, optional classify__chunk_size : Int, optional classify__class_prior : Str, optional classify__fit_prior : Bool, optional feat_ext__alternate_sign : Bool, optional feat_ext__analyzer : Str, optional feat_ext__binary : Bool, optional feat_ext__decode_error : Str, optional feat_ext__encoding : Str, optional feat_ext__input : Str, optional feat_ext__lowercase : Bool, optional feat_ext__n_features : Int, optional feat_ext__ngram_range : Str, optional feat_ext__norm : Str, optional feat_ext__preprocessor : Str, optional feat_ext__stop_words : Str, optional feat_ext__strip_accents : Str, optional feat_ext__token_pattern : Str, optional feat_ext__tokenizer : Str, optional verbose : Bool, optional Returns ------- classifier : TaxonomicClassifier