Warning
This site has been replaced by the new QIIME 2 “amplicon distribution” documentation, as of the 2025.4 release of QIIME 2. You can still access the content from the “old docs” here for the QIIME 2 2024.10 and earlier releases, but we recommend that you transition to the new documentation at https://amplicon-docs.qiime2.org. Content on this site is no longer updated and may be out of date.
Are you looking for:
the QIIME 2 homepage? That’s https://qiime2.org.
learning resources for microbiome marker gene (i.e., amplicon) analysis? See the QIIME 2 amplicon distribution documentation.
learning resources for microbiome metagenome analysis? See the MOSHPIT documentation.
installation instructions, plugins, books, videos, workshops, or resources? See the QIIME 2 Library.
general help? See the QIIME 2 Forum.
Old content beyond this point… 👴👵
beta-rarefaction: Beta diversity rarefaction¶
Citations |
|
---|
Docstring:
Usage: qiime diversity beta-rarefaction [OPTIONS] Repeatedly rarefy a feature table to compare beta diversity results within a given rarefaction depth. For a given beta diversity metric, this visualizer will provide: an Emperor jackknifed PCoA plot, samples clustered by UPGMA or neighbor joining with support calculation, and a heatmap showing the correlation between rarefaction trials of that beta diversity metric. Inputs: --i-table ARTIFACT FeatureTable[Frequency] Feature table upon which to perform beta diversity rarefaction analyses. [required] --i-phylogeny ARTIFACT Phylogenetic tree containing tip identifiers that Phylogeny[Rooted] correspond to the feature identifiers in the table. This tree can contain tip ids that are not present in the table, but all feature ids in the table must be present in this tree. [required for phylogenetic metrics] [optional] Parameters: --p-metric TEXT Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule') The beta diversity metric to be computed. [required] --p-clustering-method TEXT Choices('nj', 'upgma') Samples can be clustered with neighbor joining or UPGMA. An arbitrary rarefaction trial will be used for the tree, and the remaining trials are used to calculate the support of the internal nodes of that tree. [required] --m-metadata-file METADATA... (multiple arguments The sample metadata used for the Emperor jackknifed will be merged) PCoA plot. [required] --p-sampling-depth INTEGER Range(1, None) The total frequency that each sample should be rarefied to prior to computing the diversity metric. [required] --p-iterations INTEGER Number of times to rarefy the feature table at a Range(2, None) given sampling depth. [default: 10] --p-correlation-method TEXT Choices('pearson', 'spearman') The Mantel correlation test to be applied when computing correlation between beta diversity distance matrices. [default: 'spearman'] --p-color-scheme TEXT Choices('BrBG', 'BrBG_r', 'PRGn', 'PRGn_r', 'PiYG', 'PiYG_r', 'PuOr', 'PuOr_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r') The matplotlib color scheme to generate the heatmap with. [default: 'BrBG'] Outputs: --o-visualization VISUALIZATION [required] Miscellaneous: --output-dir PATH Output unspecified results to a directory --verbose / --quiet Display verbose output to stdout and/or stderr during execution of this action. Or silence output if execution is successful (silence is golden). --example-data PATH Write example data and exit. --citations Show citations and exit. --use-cache DIRECTORY Specify the cache to be used for the intermediate work of this action. If not provided, the default cache under $TMP/qiime2/will be used. IMPORTANT FOR HPC USERS: If you are on an HPC system and are using parallel execution it is important to set this to a location that is globally accessible to all nodes in the cluster. --help Show this message and exit.
Import:
from qiime2.plugins.diversity.visualizers import beta_rarefaction
Docstring:
Beta diversity rarefaction Repeatedly rarefy a feature table to compare beta diversity results within a given rarefaction depth. For a given beta diversity metric, this visualizer will provide: an Emperor jackknifed PCoA plot, samples clustered by UPGMA or neighbor joining with support calculation, and a heatmap showing the correlation between rarefaction trials of that beta diversity metric. Parameters ---------- table : FeatureTable[Frequency] Feature table upon which to perform beta diversity rarefaction analyses. metric : Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule') The beta diversity metric to be computed. clustering_method : Str % Choices('nj', 'upgma') Samples can be clustered with neighbor joining or UPGMA. An arbitrary rarefaction trial will be used for the tree, and the remaining trials are used to calculate the support of the internal nodes of that tree. metadata : Metadata The sample metadata used for the Emperor jackknifed PCoA plot. sampling_depth : Int % Range(1, None) The total frequency that each sample should be rarefied to prior to computing the diversity metric. iterations : Int % Range(2, None), optional Number of times to rarefy the feature table at a given sampling depth. phylogeny : Phylogeny[Rooted], optional Phylogenetic tree containing tip identifiers that correspond to the feature identifiers in the table. This tree can contain tip ids that are not present in the table, but all feature ids in the table must be present in this tree. [required for phylogenetic metrics] correlation_method : Str % Choices('pearson', 'spearman'), optional The Mantel correlation test to be applied when computing correlation between beta diversity distance matrices. color_scheme : Str % Choices('BrBG', 'BrBG_r', 'PRGn', 'PRGn_r', 'PiYG', 'PiYG_r', 'PuOr', 'PuOr_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r'), optional The matplotlib color scheme to generate the heatmap with. Returns ------- visualization : Visualization