Fork me on GitHub

jaccard: Jaccard Distance

Citations
  • P Jaccard. Nouvelles recherches sur la distribution floral. Bull. Soc. Vard. Sci. Nat, 44:223–270, 1908.

Docstring:

Usage: qiime diversity-lib jaccard [OPTIONS]

  Compute Jaccard distance for each sample in a feature table. Jaccard is
  calculated usingpresence/absence data. Data of type FeatureTable[Frequency |
  Relative Frequency] is reducedto presence/absence prior to calculation.

Inputs:
  --i-table ARTIFACT FeatureTable[Frequency | RelativeFrequency |
    PresenceAbsence]     The feature table containing the samples for which
                         Jaccard distance should be computed.       [required]
Parameters:
  --p-n-jobs NTHREADS    The number of concurrent jobs to use in performing
                         this calculation. May not exceed the number of
                         available physical cores. If n-jobs = 'auto', one job
                         will be launched for each identified CPU core on the
                         host.                                    [default: 1]
Outputs:
  --o-distance-matrix ARTIFACT
    DistanceMatrix       Distance matrix for Jaccard index          [required]
Miscellaneous:
  --output-dir PATH      Output unspecified results to a directory
  --verbose / --quiet    Display verbose output to stdout and/or stderr
                         during execution of this action. Or silence output if
                         execution is successful (silence is golden).
  --example-data PATH    Write example data and exit.
  --citations            Show citations and exit.
  --use-cache DIRECTORY  Specify the cache to be used for the intermediate
                         work of this action. If not provided, the default
                         cache under $TMP/qiime2/ will be used.
                         IMPORTANT FOR HPC USERS: If you are on an HPC system
                         and are using parallel execution it is important to
                         set this to a location that is globally accessible to
                         all nodes in the cluster.
  --help                 Show this message and exit.

Examples:
  # ### example: run on one core (by default)
  qiime diversity-lib jaccard \
    --i-table feature-table.qza \
    --o-distance-matrix jaccard-dm.qza

  # ### example: to run on n cores, replace 1 here with your preferred integer
  qiime diversity-lib jaccard \
    --i-table feature-table.qza \
    --p-n-jobs 1 \
    --o-distance-matrix jaccard-dm.qza

  # ### example: use 'auto' to run on all of host system's available CPU cores
  qiime diversity-lib jaccard \
    --i-table feature-table.qza \
    --p-n-jobs auto \
    --o-distance-matrix jaccard-dm.qza

Import:

from qiime2.plugins.diversity_lib.methods import jaccard

Docstring:

Jaccard Distance

Compute Jaccard distance for each sample in a feature table. Jaccard is
calculated usingpresence/absence data. Data of type FeatureTable[Frequency
| Relative Frequency] is reducedto presence/absence prior to calculation.

Parameters
----------
table : FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]
    The feature table containing the samples for which Jaccard distance
    should be computed.
n_jobs : Threads, optional
    The number of concurrent jobs to use in performing this calculation.
    May not exceed the number of available physical cores. If n_jobs =
    'auto', one job will be launched for each identified CPU core on the
    host.

Returns
-------
distance_matrix : DistanceMatrix
    Distance matrix for Jaccard index