Fork me on GitHub

metatable: Convert (and merge) positive numeric metadata (in)to feature table.ΒΆ

Docstring:

Usage: qiime sample-classifier metatable [OPTIONS]

  Convert numeric sample metadata from TSV file into a feature table.
  Optionally merge with an existing feature table. Only numeric metadata will
  be converted; categorical columns will be silently dropped. By default, if a
  table is used as input only samples found in both the table and metadata
  (intersection) are merged, and others are silently dropped. Set
  missing_samples="error" to raise an error if samples found in the table are
  missing from the metadata file. The metadata file can always contain a
  superset of samples. Note that columns will be dropped if they are non-
  numeric, contain no unique values (zero variance), contain only empty cells,
  or contain negative values. This method currently only converts postive
  numeric metadata into feature data. Tip: convert categorical columns to
  dummy variables to include them in the output feature table.

Inputs:
  --i-table ARTIFACT FeatureTable[Frequency]
                       Feature table containing all features that should be
                       used for target prediction.                  [optional]
Parameters:
  --m-metadata-file METADATA...
    (multiple          Metadata file to convert to feature table.
     arguments will
     be merged)                                                     [required]
  --p-missing-samples TEXT Choices('error', 'ignore')
                       How to handle missing samples in metadata. "error"
                       will fail if missing samples are detected. "ignore"
                       will cause the feature table and metadata to be
                       filtered, so that only samples found in both files are
                       retained.                           [default: 'ignore']
  --p-missing-values TEXT Choices('drop_samples', 'drop_features', 'error',
    'fill')            How to handle missing values (nans) in metadata.
                       Either "drop_samples" with missing values,
                       "drop_features" with missing values, "fill" missing
                       values with zeros, or "error" if any missing values are
                       found.                               [default: 'error']
  --p-drop-all-unique / --p-no-drop-all-unique
                       If True, columns that contain a unique value for every
                       ID will be dropped.                    [default: False]
Outputs:
  --o-converted-table ARTIFACT FeatureTable[Frequency]
                       Converted feature table                      [required]
Miscellaneous:
  --output-dir PATH    Output unspecified results to a directory
  --verbose / --quiet  Display verbose output to stdout and/or stderr during
                       execution of this action. Or silence output if
                       execution is successful (silence is golden).
  --example-data PATH  Write example data and exit.
  --citations          Show citations and exit.
  --help               Show this message and exit.

Import:

from qiime2.plugins.sample_classifier.pipelines import metatable

Docstring:

Convert (and merge) positive numeric metadata (in)to feature table.

Convert numeric sample metadata from TSV file into a feature table.
Optionally merge with an existing feature table. Only numeric metadata will
be converted; categorical columns will be silently dropped. By default, if
a table is used as input only samples found in both the table and metadata
(intersection) are merged, and others are silently dropped. Set
missing_samples="error" to raise an error if samples found in the table are
missing from the metadata file. The metadata file can always contain a
superset of samples. Note that columns will be dropped if they are non-
numeric, contain no unique values (zero variance), contain only empty
cells, or contain negative values. This method currently only converts
postive numeric metadata into feature data. Tip: convert categorical
columns to dummy variables to include them in the output feature table.

Parameters
----------
metadata : Metadata
    Metadata file to convert to feature table.
table : FeatureTable[Frequency], optional
    Feature table containing all features that should be used for target
    prediction.
missing_samples : Str % Choices('error', 'ignore'), optional
    How to handle missing samples in metadata. "error" will fail if missing
    samples are detected. "ignore" will cause the feature table and
    metadata to be filtered, so that only samples found in both files are
    retained.
missing_values : Str % Choices('drop_samples', 'drop_features', 'error', 'fill'), optional
    How to handle missing values (nans) in metadata. Either "drop_samples"
    with missing values, "drop_features" with missing values, "fill"
    missing values with zeros, or "error" if any missing values are found.
drop_all_unique : Bool, optional
    If True, columns that contain a unique value for every ID will be
    dropped.

Returns
-------
converted_table : FeatureTable[Frequency]
    Converted feature table